On the one hand, multi-principal element alloys (MPEAs) have created a paradigm shift in alloy design due to large compositional space, whereas on the other, they have presented enormous computational challenges for theory-based materials design, especially density functional theory (DFT), which is inherently computationally expensive even for traditional dilute alloys. In this paper, we present a machine learning framework, namely PREDICT (PRedict properties from Existing Database In Complex alloys Territory), that opens a pathway to predict elastic constants in large compositional space with little computational expense. The framework only relies on the DFT database of binary alloys and predicts Voigt–Reuss–Hill Young’s modulus, shear modulus, bulk modulus, elastic constants, and Poisson’s ratio in MPEAs. We show that the key descriptors of elastic constants are the A–B bond length and cohesive energy. The framework can predict elastic constants in hypothetical compositions as long as the constituent elements are present in the database, thereby enabling property exploration in multi-compositional systems. We illustrate predictions in a FCC Ni-Cu-Au-Pd-Pt system.
CITATION STYLE
Linton, N., & Aidhy, D. S. (2023). A machine learning framework for elastic constants predictions in multi-principal element alloys. APL Machine Learning, 1(1). https://doi.org/10.1063/5.0129928
Mendeley helps you to discover research relevant for your work.