Laboratory Study of Collisionless Magnetic Reconnection

25Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A concise review is given on the past two decades’ results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by the Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength, energy conversion and partitioning from magnetic field to ions and electrons including particle acceleration, electrostatic and electromagnetic kinetic plasma waves with various wavelengths, and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in collisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales.

Cite

CITATION STYLE

APA

Ji, H., Yoo, J., Fox, W., Yamada, M., Argall, M., Egedal, J., … Chen, L. J. (2023, December 1). Laboratory Study of Collisionless Magnetic Reconnection. Space Science Reviews. Springer Science and Business Media B.V. https://doi.org/10.1007/s11214-023-01024-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free