Abstract
While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[3 H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [3 H]cholesterol from HDL-[3 H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2 -/- mice. Increased flux of HDL-[3 H]CE to biliary FC was noted with FABP1 overexpression and in SCP2 -/- mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[3 H]CE to biliary FC or bile acids in FABP1 -/- mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination.-Wang, J., J. Bie, and S. Ghosh. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.
Author supplied keywords
Cite
CITATION STYLE
Wang, J., Bie, J., & Ghosh, S. (2016). Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile. Journal of Lipid Research, 57(9), 1712–1719. https://doi.org/10.1194/jlr.M069682
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.