The maximum feasible subset problem (maxFS) and applications

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The maximum feasible subset problem (maxFS) is this: given an infeasible set of constraints, find a largest cardinality subset that admits a feasible solution. This problem is NP-hard but has been studied extensively for the case of linear constraints, and good heuristic solution algorithms are available. There is a surprisingly large range of applications for algorithms that solve the linear maxFS problem, including analyzing infeasible linear programs, finding the data depth, placing separating hyperplanes in classification decision trees, recovering sparse data in compressed sensing, dimension reduction in nonnegative matrix factorization, etc. This paper reviews maxFS solution algorithms, and surveys the existing and new applications.

Cite

CITATION STYLE

APA

Chinneck, J. W. (2019). The maximum feasible subset problem (maxFS) and applications. INFOR. Taylor and Francis. https://doi.org/10.1080/03155986.2019.1607715

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free