New granule cells are continuously integrated into hippocampal circuits throughout adulthood, and the fine-tuning of this process is likely important for efficient hippocampal function. During development, this integration process is critically regulated by the α-calcium/calmodulin-dependent protein kinase II (α-CaMKII), and here we ask whether this role is conserved in the adult brain. To do this, we developed a transgenic strategy to conditionally delete α-CaMKII from neural progenitor cells and their progeny in adult mice. First, we found that the selective deletion of α-CaMKII from newly generated dentate granule cells led to an increase in dendritic complexity. Second,α-CaMKII deletion led to a reduction in number of mature synapses and cell survival. Third, consistent with altered morphological and synaptic development, acquisition of one-trial contextual fear conditioning was impaired after deletion ofα-CaMKII from newly generated dentate granule cells. Previous work in Xenopus identified α-CaMKII as playing a key role in the stabilization of dendritic and synaptic structure during development. The current study indicates that α-CaMKII plays a plays a similar, cellautonomous role in the adult hippocampus and, in addition, reveals that the loss of α-CaMKII from adult-generated granule cells is associated with impaired hippocampus-dependent learning. © 2014 the authors.
CITATION STYLE
Arruda-Carvalho, M., Restivo, L., Guskjolen, A., Epp, J. R., Elgersma, Y., Josselyn, S. A., & Frankland, P. W. (2014). Conditional deletion of α-CaMKII impairs integration of adult-generated granule cells into dentate gyrus circuits and hippocampus-dependent learning. Journal of Neuroscience, 34(36), 11919–11928. https://doi.org/10.1523/JNEUROSCI.0652-14.2014
Mendeley helps you to discover research relevant for your work.