Deep Reinforcement Learning Based Charging Scheduling for Household Electric Vehicles in Active Distribution Network

25Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

With the booming of electric vehicles (EVs) across the world, their increasing charging demands pose challenges to urban distribution networks. Particularly, due to the further implementation of time-of-use prices, the charging behaviors of household EVs are concentrated on low-cost periods, thus generating new load peaks and affecting the secure operation of the medium- and low-voltage grids. This problem is particularly acute in many old communities with relatively poor electricity infrastructure. In this paper, a novel two-stage charging scheduling scheme based on deep reinforcement learning is proposed to improve the power quality and achieve optimal charging scheduling of household EVs simultaneously in active distribution network (ADN) during valley period. In the first stage, the optimal charging profiles of charging stations are determined by solving the optimal power flow with the objective of eliminating peak-valley load differences. In the second stage, an intelligent agent based on proximal policy optimization algorithm is developed to dispatch the household EVs sequentially within the low-cost period considering their discrete nature of arrival. Through powerful approximation of neural network, the challenge of imperfect knowledge is tackled effectively during the charging scheduling process. Finally, numerical results demonstrate that the proposed scheme exhibits great improvement in relieving peak-valley differences as well as improving voltage quality in the ADN.

Cite

CITATION STYLE

APA

Qi, T., Ye, C., Zhao, Y., Li, L., & Ding, Y. (2023). Deep Reinforcement Learning Based Charging Scheduling for Household Electric Vehicles in Active Distribution Network. Journal of Modern Power Systems and Clean Energy, 11(6), 1890–1901. https://doi.org/10.35833/MPCE.2022.000456

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free