Programmable metasurfaces allow dynamic and real-time control of electromagnetic (EM) waves in subwavelength resolution, holding extraordinary potentials to establish meta-systems. Achieving independent and real-time controls of orthogonally-polarized EM waves via the programmable metasurface is attractive for many applications, but remains considerably challenging. Here, a polarization-controlled dual-programmable metasurface (PDPM) with modular control circuits is proposed, which enables a dibit encoding capability in modifying the phase profiles of x- and y-polarized waves individually. The constructed extended interface circuit is able to extend the number of control interfaces from a field programmable gate array by orders of magnitude and also possesses memory function, which enhance hugely the rewritability, scalability, reliability, and stability of PDPM. As a proof-of-concept, a wave-based exclusive-OR logic gate platform for spin control of circularly-polarized waves, a fixed-frequency wide-angle dual-beam scanning system, and a dual-polarized shared-aperture antenna are demonstrated using a single PDPM. The proposed PDPM opens up avenues for realizing more advanced and integrated multifunctional devices and systems that have two independent polarization-controlled signal channels, which may find many applications in future-oriented intelligent communication, imaging, and computing technologies.
CITATION STYLE
Zhang, X. G., Yu, Q., Jiang, W. X., Sun, Y. L., Bai, L., Wang, Q., … Cui, T. J. (2020). Polarization-Controlled Dual-Programmable Metasurfaces. Advanced Science, 7(11). https://doi.org/10.1002/advs.201903382
Mendeley helps you to discover research relevant for your work.