Abstract
2′-Fucosyllactose (2′-FL), one of the most abundant human milk oligosaccharides (HMOs), is used as a promising infant formula ingredient owing to its multiple health benefits for newborns. However, limited availability and high-cost preparation have restricted its extensive use and intensive research on its potential functions. In this work, a powerful Escherichia coli cell factory was developed to ulteriorly increase 2′-FL production. Initially, a modular pathway engineering was strengthened to balance the synthesis pathway through different plasmid combinations with a resulting maximum 2′-FL titre of 1.45 g l−1. To further facilitate the metabolic flux from GDP-l-fucose towards 2′-FL, the CRISPR-Cas9 system was utilized to inactivate the genes including lacZ and wcaJ, increasing the titre by 6.59-fold. Notably, the co-introduction of NADPH and GTP regeneration pathways was confirmed to be more conducive to 2′-FL formation, achieving a 2′-FL titre of 2.24 g l−1. Moreover, comparisons of various exogenous α1,2-fucosyltransferase candidates revealed that futC from Helicobacter pylori generated the highest titre of 2′-FL. Finally, the viability of scaled-up production of 2′-FL was evidenced in a 3 l bioreactor with a maximum titre of 22.3 g l−1 2′-FL and a yield of 0.53 mole 2′-FL mole−1 lactose.
Cite
CITATION STYLE
Li, M., Li, C., Hu, M., & Zhang, T. (2022). Metabolic engineering strategies of de novo pathway for enhancing 2′-fucosyllactose synthesis in Escherichia coli. Microbial Biotechnology, 15(5), 1561–1573. https://doi.org/10.1111/1751-7915.13977
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.