Mechanotransduction has been divided into mechanotransmission, mechanosensing, and mechanoresponse, although how a cell performs all three functions using the same set of structural components is still highly debated. Here, we bridge the gap between emerging molecular and systems-level understandings of mechanotransduction through a multiscale model linking these three phases. Our model incorporates a discrete network of actin filaments and associated proteins that responds to stretching through geometric relaxation. We assess three potential activating mechanisms at mechanosensitive crosslinks as inputs to a mixture model of molecular release and benchmark each using experimental data of mechanically-induced Rho GTPase FilGAP release from actin-filamin crosslinks. Our results suggest that filamin-FilGAP mechanotransduction response is best explained by a bandpass mechanism favoring release when crosslinking angles fall outside of a specific range. Our model further investigates the difference between ordered versus disordered networks and finds that a more disordered actin network may allow a cell to more finely tune control of molecular release enabling a more robust response.
CITATION STYLE
Kang, J., Puskar, K. M., Ehrlicher, A. J., Leduc, P. R., & Schwartz, R. S. (2015). Structurally governed cell mechanotransduction through multiscale modeling. Scientific Reports, 5. https://doi.org/10.1038/srep08622
Mendeley helps you to discover research relevant for your work.