Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway

2Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Alzheimer's disease (AD), a neurodegenerative disorder, causes short-term memory and cognition declines. It is estimated that one in three elderly people die from AD or other dementias. Chinese herbal medicine as a potential drug for treating AD has gained growing interest from many researchers. Moschus, a rare and valuable traditional Chinese animal medicine, was originally documented in Shennong Ben Cao Jing and recognized for its properties of reviving consciousness/resuscitation. Additionally, Moschus has the efficacy of “regulation of menstruation with blood activation, relief of swelling and pain” and is used for treating unconsciousness, stroke, coma, and cerebrovascular diseases. However, it is uncertain whether Moschus has any protective effect on AD patients. We explored whether Moschus could protect glutamate (Glu)-induced PC12 cells from cellular injury and preliminarily explored their related action mechanisms. The chemical compounds of Moschus were analyzed and identified by GC–MS. The Glu-induced differentiated PC12 cell model was thought to be the common AD cellular model. The study aims to preliminarily investigate the intervention effect of Moschus on Glu-induced PC12 cell damage as well as their related action mechanisms. Cell viability, lactate dehydrogenase (LDH), mitochondrial reactive oxygen species, mitochondrial membrane potential (MMP), cell apoptosis, autophagic vacuoles, autolysosomes or autophagosomes, proteins related to apoptosis, and the proteins related to autophagy were examined and analyzed. Seventeen active compounds of the Moschus sample were identified based on GC–MS analysis. In comparison to the control group, Glu stimulation increased cell viability loss, LDH release, mitochondrial damage, loss of MMP, apoptosis rate, and the number of cells containing autophagic vacuoles, and autolysosomes or autophagosomes, while these results were decreased after the pretreatment with Moschus and 3-methyladenine (3-MA). Furthermore, Glu stimulation significantly increased cleaved caspase-3, Beclin1, and LC3II protein expression, and reduced B-cell lymphoma 2/BAX ratio and p62 protein expression, but these results were reversed after pretreatment of Moschus and 3-MA. Moschus has protective activity in Glu-induced PC12 cell injury, and the potential mechanism might involve the regulation of autophagy and apoptosis. Our study may promote research on Moschus in the field of neurodegenerative diseases, and Moschus may be considered as a potential therapeutic agent for AD.

Cite

CITATION STYLE

APA

Xie, D., Song, C., Qin, T., Zhai, Z., Cai, J., Dai, J., … Xu, Y. (2023). Moschus ameliorates glutamate-induced cellular damage by regulating autophagy and apoptosis pathway. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-45878-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free