A transformative gold patterning through selective laser refining of cyanide

6Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

Abstract

Gold is an essential noble metal for electronics, and its application area is increasing continuously through the introduction of gold nanoparticle ink that enables rapid prototyping and direct writing of gold electrodes on versatile substrates at a low temperature. However, the synthesis of gold nanoparticles has certain limitations involving high cost, long synthesis time, large waste of material, and frequent use of chemicals. In this study, we suggest simultaneous laser refining of gold cyanide and selective fabrication of gold electrodes directly on the substrate without a separate synthesis step. Gold cyanide is commonly the first product of gold from the primitive ore, and the gold can be extracted directly from the rapid photothermal decomposition of gold cyanide by the laser. It was confirmed that laser-induced thermocapillary force plays an important role in creating the continuous gold patterns by aligning the refined gold. The resultant gold electrodes exhibited a low resistivity analogous to the conventional direct writing method using nanoparticles, and the facile repair process of a damaged electrode was demonstrated as the proof-of-concept. The proposed transformative approach for gold patterning, distinguished from the previous top-down and bottom-up approaches, has the potential to replace the well-known techniques and provide a new branch of electrode manufacturing scheme.

Cite

CITATION STYLE

APA

Lim, J., Ham, J., Lee, W., Hwang, E., Lee, W. C., & Hong, S. (2021). A transformative gold patterning through selective laser refining of cyanide. Nanomaterials, 11(8). https://doi.org/10.3390/nano11081921

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free