Abstract
Clinical trials are necessary in order to develop treatments for diseases; however, they can often be costly, time consuming, and demanding to the patients. This paper summarizes several common methods used for optimal design that can be used to address these issues. In addition, we introduce a novel method for optimizing experiment designs applied to HIV 2-LTR clinical trials. Our method employs Bayesian techniques to optimize the experiment outcome by maximizing the Expected Kullback-Leibler Divergence (EKLD) between the a priori knowledge of system parameters before the experiment and the a posteriori knowledge of the system parameters after the experiment. We show that our method is robust and performs equally well if not better than traditional optimal experiment design techniques.
Cite
CITATION STYLE
Cannon, L. M., Vargas-Garcia, C. A., Jagarapu, A., Piovoso, M. J., & Zurakowski, R. (2018). HIV 2-LTR experiment design optimization. PLoS ONE, 13(11). https://doi.org/10.1371/journal.pone.0206700
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.