Abstract
Brassinosteroid (BR), a plant steroid hormone, plays key roles in numerous growth and developmental processes as well as tolerance to both abiotic and biotic stress. To understand the biological networks involved in BR-mediated signaling pathways and stress tolerance, we performed comparative genome-wide transcriptome analysis of a constitutively activated BR bes1-D mutant with an Agilent Arabidopsis 4 x 44K oligo chip. As a result, we newly identified 1,091 (562 up-regulated and 529 downregulated) significant differentially expressed genes (DEGs). The combination of GO enrichment and protein network analysis revealed that stress-related processes, such as metabolism, development, abiotic/biotic stress, immunity, and defense, were critically linked to BR signaling pathways. Among the identified gene sets, we confirmed more than a 6-fold up-regulation of NB-ARC and FLS2 in bes1-D plants. However, some genes, including TIR1, TSA1 and OCP3, were down-regulated. Consistently, BR-activated plants showed higher tolerance to drought stress and pathogen infection compared to wild-type controls. In this study, we newly developed a useful, comprehensive method for large-scale identification of critical network and gene sets with global transcriptome analysis using a microarray. This study also showed that gain of function in the bes1-D gene can regulate the adaptive response of plants to various stressful conditions.
Author supplied keywords
Cite
CITATION STYLE
Kim, H., Moon, S., Lee, J., Bae, W., Won, K., Kim, Y. K., … Ryu, H. (2016). Identification of multiple key genes involved in pathogen defense and multi-stress tolerance using microarray and network analysis. Journal of Plant Biotechnology, 43(3), 347–358. https://doi.org/10.5010/JPB.2016.43.3.347
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.