A heuristic approach for tracking error and energy consumption minimization in solar tracking systems

23Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper proposes a methodology for optimizing a class of robotic solar tracking systems with two degrees of freedom using a heuristic approach. The proposal allows a balance to be found between the energy consumption and tracking accuracy in the tracking system. The main purpose is the behavior modification of the system through the combination of two manipulation strategies, one associated with the energy savings and the other with the tracking error. The heuristic approach was implemented in a solar tracking system with the end effector connected to a solar measurement device. Four energy-saving strategies and three tracking strategies were developed, simulated, and implemented in the system. The simulation results show that the resulting strategy combination (tracking error and energy saving approach) led to 31.55% energy savings compared to the reference values, with a tracking error of 0.06°. Moreover, the experimental assessment of the same combination led to 26.98% energy is being saved, with an azimuthal tracking error of 0.062° and elevation tracking error of 0.071°. The preceding values support the aim of the presented proposal to significantly reduce energy consumption while concurrently achieving a competitive tracking error.

Cite

CITATION STYLE

APA

Flores-Hernandez, D. A., Palomino-Resendiz, S. I., Luviano-Juarez, A., Lozada-Castillo, N., & Gutierrez-Frias, O. (2019). A heuristic approach for tracking error and energy consumption minimization in solar tracking systems. IEEE Access, 7, 52755–52768. https://doi.org/10.1109/ACCESS.2019.2912317

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free