Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation

11Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

Abstract

Data augmentation has been proven to be an effective technique for developing machine learning models that are robust to known classes of distributional shifts (e.g., rotations of images), and alignment regularization is a technique often used together with data augmentation to further help the model learn representations invariant to the shifts used to augment the data. In this paper, motivated by a proliferation of options of alignment regularizations, we seek to evaluate the performances of several popular design choices along the dimensions of robustness and invariance, for which we introduce a new test procedure. Our synthetic experiment results speak to the benefits of squared "2 norm regularization. Further, we also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic. Finally, we test this simple technique we identify (worst-case data augmentation with squared "2 norm alignment regularization) and show that the benefits of this method outrun those of the specially designed methods. We also release a software package in both TensorFlow and PyTorch for users to use the method with a couple of lines at https://github.com/jyanln/AlignReg.

Cite

CITATION STYLE

APA

Wang, H., Huang, Z., Wu, X., & Xing, E. (2022). Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1846–1856). Association for Computing Machinery. https://doi.org/10.1145/3534678.3539438

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free