A 2-methoxyestradiol bis-sulphamoylated derivative induces apoptosis in breast cell lines

15Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Introduction: Research involving antimitotic compounds identified 2-methoxyestradiol (2ME2), as a promising anticancer endogenous metabolite. Owing to its low bioavailability, several in silico-designed 2ME2 analogues were synthesized. Structure-activity relationship studies indicated that an already existing 17-β-estradiol analogue, namely (8R,13S,14S,17S)-2-ethyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrane-3,17-diyl bis(sulphamate) (EMBS) to exert potential in vitro anticancer activity. Methods: This study investigated the in vitro apoptotic influence of EMBS in an estrogen receptor-positive breast adenocarcinoma epithelial cell line (MCF-7); an estrogen receptor-negative breast epithelial cell line (MDA-MB-231) and a non-tumorigenic breast cell line (MCF-12A). Cell cycle progression, a phosphatidylserine flip, caspase 6-, 7- and 8 enzyme activity levels, Bcl-2 phosphorylation status at serine 70 and Bcl-2- and p53 protein levels were investigated to identify a possible action mechanism for apoptotic induction. Results: The xCELLigence real-time label-independent approach revealed that EMBS exerted antiproliferative activity in all three cell lines after 24h of exposure. A G 2 M block was observed and apoptosis induction was verified by means of flow cytometry using propidium iodide and Annexin V-FITC respectively. EMBS-treated cells demonstrated a reduced mitochondrial membrane potential. EMBS exposure resulted in a statistically significant increase in p53 protein expression, decreased Bcl-2 protein expression and a decrease in pBcl-2(s70) phosphorylation status in all three cell lines. Results support the notion that EMBS induces apoptosis in all three cell lines. Conclusion: This study includes investigation into the apoptotic hallmarks exerted by EMBS after exposure of three cell lines namely MCF-7-, MDA-MDA-231- and MCF-12A cells. Increased caspase 6-, caspase 7- and caspase 8 activities, upregulation of p53 protein expression and a decrease in phosphorylation status of Bcl-2 at serine 70 in tumorigenic and non-tumorigenic lines were demonstrated.

Cite

CITATION STYLE

APA

Visagie, M. H., Birkholtz, L. M., & Joubert, A. M. (2015). A 2-methoxyestradiol bis-sulphamoylated derivative induces apoptosis in breast cell lines. Cell and Bioscience, 5(1). https://doi.org/10.1186/s13578-015-0010-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free