Abstract
The goal of this study was to investigate the viability of microencapsulated and coated Lactobacillus acidophilus in yogurt during storage in a refrigerator for 28 days and in simulated gastrointestinal conditions. Furthermore, the effect of the microencapsulated and coated L. acidophilus on the physicochemical, textural, and sensory properties of yogurt was assessed. Lactobacillus acidophilus was microencapsulated in sodium alginate and coated with xanthan and/or whey protein. The coating led to the increase in the microcapsule diameter and the microencapsulation yield, while it led to the decreased moisture and water activity (aw) of the microcapsule. The survival of L. acidophilus microcapsule coated with whey protein and xanthan in yogurt during storage and exposure to simulated gastrointestinal conditions was significantly increased. Compared with free bacteria, the L. acidophilus microcapsule coated with whey protein and xanthan had the increased viability in yogurt until 2.16 log CFU/g during storage and 3.52 log CFU/g in simulated gastrointestinal conditions. After the 28th day of storage, a significant difference between the acidity and pH of yogurt containing coated and microencapsulated L. acidophilus and control yogurt was not observed. However, yogurt containing free L. acidophilus had lower pH and higher acidity and showed a significant difference (p
Author supplied keywords
Cite
CITATION STYLE
Khorshidi, M., Heshmati, A., Taheri, M., Karami, M., & Mahjub, R. (2021). Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Science and Nutrition, 9(7), 3942–3953. https://doi.org/10.1002/fsn3.2398
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.