Abstract
This study presents a fully automated algorithm for the segmentation of the hippocampus in structural Magnetic Resonance Imaging (MRI) and its deployment as a service on an open cloud infrastructure. Optimal atlases strategies for multi-atlas learning are combined with a voxel-wise classification approach. The method efficiency is optimized as training atlases are previously registered to a data driven template, accordingly for each test MRI scan only a registration is needed. The selected optimal atlases are used to train dedicated random forest classifiers whose labels are fused by majority voting. The method performances were tested on a set of 100 MRI scans provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Leave-oneout results (Dice = 0.910 ± 0.004) show the presented method compares well with other state-of-the-art techniques and a benchmark segmentation tool as FreeSurfer. The proposed strategy significantly improves a standard multi-atlas approach (p < .001).
Author supplied keywords
Cite
CITATION STYLE
Amoroso, N., Tangaro, S., Errico, R., Garuccio, E., Monda, A., Sensi, F., … Bellotti, R. (2015). An hippocampal segmentation tool within an open cloud infrastructure. In Lecture Notes in Computer Science (Vol. 9281, pp. 193–200). Springer Verlag. https://doi.org/10.1007/978-3-319-23222-5_24
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.