Decision list compression by mild random restrictions

4Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A decision list is an ordered list of rules. Each rule is specified by a term, which is a conjunction of literals, and a value. Given an input, the output of a decision list is the value corresponding to the first rule whose term is satisfied by the input. Decision lists generalize both CNFs and DNFs, and have been studied both in complexity theory and in learning theory. The size of a decision list is the number of rules, and its width is the maximal number of variables in a term. We prove that decision lists of small width can always be approximated by decision lists of small size, where we obtain sharp bounds. This in particular resolves a conjecture of Gopalan, Meka and Reingold (Computational Complexity, 2013) on DNF sparsification. An ingredient in our proof is a new random restriction lemma, which allows to analyze how DNFs (and more generally, decision lists) simplify if a small fraction of the variables are fixed. This is in contrast to the more commonly used switching lemma, which requires most of the variables to be fixed.

Cite

CITATION STYLE

APA

Lovett, S., Wu, K., & Zhang, J. (2020). Decision list compression by mild random restrictions. In Proceedings of the Annual ACM Symposium on Theory of Computing (pp. 247–254). Association for Computing Machinery. https://doi.org/10.1145/3357713.3384241

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free