Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows

13Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we leverage predictive uncertainty of deep neural networks to answer challenging questions material scientists usually encounter in machine learning-based material application workflows. First, we show that by leveraging predictive uncertainty, a user can determine the required training data set size to achieve a certain classification accuracy. Next, we propose uncertainty-guided decision referral to detect and refrain from making decisions on confusing samples. Finally, we show that predictive uncertainty can also be used to detect out-of-distribution test samples. We find that this scheme is accurate enough to detect a wide range of real-world shifts in data, e.g., changes in the image acquisition conditions or changes in the synthesis conditions. Using microstructure information from scanning electron microscope (SEM) images as an example use case, we show that leveraging uncertainty-aware deep learning can significantly improve the performance and dependability of classification models.

Cite

CITATION STYLE

APA

Zhang, J., Kailkhura, B., & Han, T. Y. J. (2021). Leveraging Uncertainty from Deep Learning for Trustworthy Material Discovery Workflows. ACS Omega, 6(19), 12711–12721. https://doi.org/10.1021/acsomega.1c00975

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free