Abstract
Activated NF-κB is a critical mechanism by which lymphoma cells infected by Epstein-Barr virus (EBV/HHV-4) and Kaposi sarcoma herpesvirus (KSHV/HHV-8) are protected from apoptotic stress. Selective pharmacologic inhibition of constitutive NF-κB activity induces apoptosis in KSHV- and EBV-infected lymphoma cells. In both tumor types, pharmacologic inhibition of NF-κB in vitro induced identical mitochondrially mediated apoptosis cascades. Assessment of gene regulation by microarray analysis revealed that the inhibition of NF-κB in tumor cells results in the down-regulation of a distinct group of prosurvival genes, including cIAP-1, cIAP-2, cFLIP, and IL-6. Using EBV- and KSHV-associated lymphomas in a murine system, we demonstrated that Bay 11-7082, a selective pharmacologic inhibitor of NF-κB, prevents or delays tumor growth and prolongs disease-free survival. Inhibition of NF-κB activity and tumor growth responses were further documented using a traceable reporter KSHV-positive cell line and in vivo imaging. These findings indicate that specific NF-κB-regulated survival factors work cooperatively to protect KSHV-and EBV-infected lymphoma cells from apoptosis such that they promote the establishment and progression of KSHV and EBV-associated lymphomas in mice. They also support the use of selective NF-κB inhibitors in the treatment of herpesvirus-associated lymphomas. © 2006 by The American Society of Hematology.
Cite
CITATION STYLE
Keller, S. A., Hernandez-Hopkins, D., Vider, J., Ponomarev, V., Hyjek, E., Schattner, E. J., & Cesarman, E. (2006). NF-κB is essential for the progression of KSHV- and EBV-infected lymphomas in vivo. Blood, 107(8), 3295–3302. https://doi.org/10.1182/blood-2005-07-2730
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.