Abstract
Background: The optimal positions of different types of nebulizer for aerosol delivery remain unclear. Methods: Three ICU ventilators employing three types of nebulizer were separately connected to a simulated lung to simulate nebulization during invasive ventilation. Assist/control-pressure control (A/C-PC) mode was utilized, with inspiratory pressure (Pi) set to 12 cmH2O and positive end expiratory pressure (PEEP) set to 5 cmH2O, and with a target Vt of 500 ml. The bias flow of all the ventilators was set to 2 L/min. The three nebulizers were the continuous jet nebulizer (c-JN), the inspiratory synchronized jet nebulizer (i-JN), and the vibrating mesh nebulizer (VMN). The five nebulizer positions were as follows: at the Y-piece (position 1) and 15 cm from the Y-piece (position 2) between the endotracheal tube and the Y-piece, at the Y-piece (position 3) and 15 cm from the Y-piece (position 4) in the inspiratory limb; and at the humidifier inlet (position 5). Aerosols were collected with a disposable filter placed at the simulated lung outlet (n = 3) and were measured by UV spectrophotometry (276 nm). The measurements were compared under different experimental conditions. Results: The aerosol delivery of c-JN, i-JN, and VMN was 5.33 ± 0.49~11.12 ± 0.36%, 7.73 ± 0.76~13.75 ± 0.46% and 11.13 ± 56–30.2 ± 1.63%, respectively. The higher aerosol delivery: for c-JN~Positions 2 (10.95 ± 0.15%), fori-JN~Positions 1 or 2 (12.91 ± 0.88% or 13.45 ± 0.42%), for VMN~Positions 4(29.03 ± 1.08%); the lower aerosol delivery: for c-JN~Positions 1, 3 or 5, fori-JN~Positions 4 or 5, for VMN~Positions 5. The highest aerosol delivery:For c-JN at Position 2 (10.95 ±.15%), for i-JN at Position 1 or 2 (12.91 ±.88% or 13.45 ±.42%), for VMN at Positions 4 (29. 03 ± 1.08%); the lower aerosol delivery: for c-JN at Positions 1, 3 or 5, for i-JN at Positions 4 or 5, for VMN at Positions 5. The highest aerosol deliveryof c-JN was lower than that of i-JN while the VMN was the highest (all P 0.05). Conclusion: During adult mechanical ventilation, the type and position of nebulizer influences aerosol delivery efficiency, with no differences between ventilators.
Author supplied keywords
Cite
CITATION STYLE
Hou, H., Xu, D., Dai, B., Zhao, H., Wang, W., Kang, J., & Tan, W. (2022). Position of different nebulizer types for aerosol delivery in an adult model of mechanical ventilation. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.950569
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.