A variational approach to probing extreme events in turbulent dynamical systems

52Citations
Citations of this article
90Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Extreme events are ubiquitous in a wide range of dynamical systems, including turbulent fluid flows, nonlinear waves, large-scale networks, and biological systems. We propose a variational framework for probing conditions that trigger intermittent extreme events in high-dimensional nonlinear dynamical systems. We seek the triggers as the probabilistically feasible solutions of an appropriately constrained optimization problem, where the function to be maximized is a system observable exhibiting intermittent extreme bursts. The constraints are imposed to ensure the physical admissibility of the optimal solutions, that is, significant probability for their occurrence under the natural flow of the dynamical system. We apply the method to a body-forced incompressible Navier-Stokes equation, known as the Kolmogorov flow. We find that the intermittent bursts of the energy dissipation are independent of the external forcing and are instead caused by the spontaneous transfer of energy from large scales to the mean flow via nonlinear triad interactions. The global maximizer of the corresponding variational problem identifies the responsible triad, hence providing a precursor for the occurrence of extreme dissipation events. Specifically, monitoring the energy transfers within this triad allows us to develop a data-driven short-term predictor for the intermittent bursts of energy dissipation. We assess the performance of this predictor through direct numerical simulations.

Cite

CITATION STYLE

APA

Farazmand, M., & Sapsis, T. P. (2017). A variational approach to probing extreme events in turbulent dynamical systems. Science Advances, 3(9). https://doi.org/10.1126/sciadv.1701533

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free