We focus on the power consumption problem for a downlink multiuser small-cell network (SCN) considering both the quality of service (QoS) and power constraints. First based on a practical power consumption model taking into account both the dynamic transmit power and static circuit power, we formulate and then transform the power consumption optimization problem into a convex problem by using semidefinite relaxation (SDR) technique and obtain the optimal solution by the CVX tool. We further note that the SDR-based solution becomes infeasible for realistic implementation due to its heavy backhaul burden and computational complexity. To this end, we propose an alternative suboptimal algorithm which has low implementation overhead and complexity, based on minimum mean square error (MMSE) precoding. Furthermore, we propose a distributed correlation-based antenna selection (DCAS) algorithm combining with our optimization algorithms to reduce the static circuit power consumption for the SCN. Finally, simulation results demonstrate that our proposed suboptimal algorithm is very effective on power consumption minimization, with significantly reduced backhaul burden and computational complexity. Moreover, we show that our optimization algorithms with DCAS have less power consumption than the other benchmark algorithms.
CITATION STYLE
Sun, Q., Wang, X., Wang, J., & Xu, C. (2017). Joint Antenna Selection and Precoding Optimization for Small-Cell Network with Minimum Power Consumption. International Journal of Antennas and Propagation, 2017. https://doi.org/10.1155/2017/4302950
Mendeley helps you to discover research relevant for your work.