The role of water in plant–microbe interactions

127Citations
Citations of this article
290Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Throughout their life plants are associated with various microorganisms, including commensal, symbiotic and pathogenic microorganisms. Pathogens are genetically adapted to aggressively colonize and proliferate in host plants to cause disease. However, disease outbreaks occur only under permissive environmental conditions. The interplay between host, pathogen and environment is famously known as the ‘disease triangle’. Among the environmental factors, rainfall events, which often create a period of high atmospheric humidity, have repeatedly been shown to promote disease outbreaks in plants, suggesting that the availability of water is crucial for pathogenesis. During pathogen infection, water-soaking spots are frequently observed on infected leaves as an early symptom of disease. Recent studies have shown that pathogenic bacteria dedicate specialized virulence proteins to create an aqueous habitat inside the leaf apoplast under high humidity. Water availability in the apoplastic environment, and probably other associated changes, can determine the success of potentially pathogenic microbes. These new findings reinforce the notion that the fight over water may be a major battleground between plants and pathogens. In this article, we will discuss the role of water availability in host–microbe interactions, with a focus on plant–bacterial interactions.

Cite

CITATION STYLE

APA

Aung, K., Jiang, Y., & He, S. Y. (2018). The role of water in plant–microbe interactions. Plant Journal, 93(4), 771–780. https://doi.org/10.1111/tpj.13795

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free