Clique-based clustering of correlated SNPs in a gene can improve performance of gene-based multi-bin linear combination test

12Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Gene-based analysis of multiple single nucleotide polymorphisms (SNPs) in a gene region is an alternative to single SNP analysis. The multi-bin linear combination test (MLC) proposed in previous studies utilizes the correlation among SNPs within a gene to construct a gene-based global test. SNPs are partitioned into clusters of highly correlated SNPs, and the MLC test statistic quadratically combines linear combination statistics constructed for each cluster. The test has degrees of freedom equal to the number of clusters and can be more powerful than a fully quadratic or fully linear test statistic. In this study, we develop a new SNP clustering algorithm designed to find cliques, which are complete subnetworks of SNPs with all pairwise correlations above a threshold. We evaluate the performance of the MLC test using the clique-based CLQ algorithm versus using the tag-SNP-based LDSelect algorithm. In our numerical power calculations we observed that the two clustering algorithms produce identical clusters about 4060% of the time, yielding similar power on average. However, because the CLQ algorithm tends to produce smaller clusters with stronger positive correlation, the MLC test is less likely to be affected by the occurrence of opposing signs in the individual SNP effect coefficients.

Cite

CITATION STYLE

APA

Yoo, Y. J., Kim, S. A., & Bull, S. B. (2015). Clique-based clustering of correlated SNPs in a gene can improve performance of gene-based multi-bin linear combination test. BioMed Research International, 2015. https://doi.org/10.1155/2015/852341

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free