Abstract
Background: Prostate alignment is subject to interobserver variability in cone-beam CT (CBCT)-based soft-tissue matching. This study aims to analyze the impact of possible interobserver variability in CBCT-based soft-tissue matching for prostate cancer radiotherapy. Methods: Retrospective data, consisting of 156 CBCT images from twelve prostate cancer patients with elective nodal irradiation were analyzed in this study. To simulate possible interobserver variability, couch shifts of 2 mm relative to the resulting patient position of prostate alignment were assumed as potential patient positions (27 possibilities). For each CBCT, the doses of the potential patient positions were re-calculated using deformable image registration-based synthetic CT. The impact of the simulated interobserver variability was evaluated using tumor control probabilities (TCPs) and normal tissue complication probabilities (NTCPs). Results: No significant differences in TCPs were found between prostate alignment and potential patient positions (0.944 ± 0.003 vs 0.945 ± 0.003, P = 0.117). The average NTCPs of the rectum ranged from 5.16 to 7.29 (%) among the potential patient positions and were highly influenced by the couch shift in the anterior–posterior direction. In contrast, the average NTCPs of the bladder ranged from 0.75 to 1.12 (%) among the potential patient positions and were relatively negligible. Conclusions: The NTCPs of the rectum, rather than the TCPs of the target, were highly influenced by the interobserver variability in CBCT-based soft-tissue matching. This study provides a theoretical explanation for daily CBCT-based image guidance and the prostate-rectum interface matching procedure. Trial registration: Not applicable.
Author supplied keywords
Cite
CITATION STYLE
Zhang, X., Wang, X., Li, X., Zhou, L., Nie, S., Li, C., … Zhong, R. (2022). Evaluating the impact of possible interobserver variability in CBCT-based soft-tissue matching using TCP/NTCP models for prostate cancer radiotherapy. Radiation Oncology, 17(1). https://doi.org/10.1186/s13014-022-02034-1
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.