Numerical Comparison of the Performance of Genetic Algorithm and Particle Swarm Optimization in Excavations

  • Hashemi S
  • Rahmani I
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Today, the back analysis methods are known as reliable and effective approaches for estimating the soil strength parameters in the site of project. The back analysis can be performed by genetic algorithm and particle swarm optimization in the form of an optimization process. In this paper, the back analysis is carried out using genetic algorithm and particle swarm optimization in order to determine the soil strength parameters in an excavation project in Tehran city. The process is automatically accomplished by linking between MATLAB and Abaqus software using Python programming language. To assess the results of numerical method, this method is initially compared with the results of numerical studies by Babu and Singh. After the verification of numerical results, the values of the three parameters of elastic modulus, cohesion and friction angle (parameters of the Mohr–Coulomb model) of the soil are determined and optimized for three soil layers of the project site using genetic algorithm and particle swarm optimization. The results optimized by genetic algorithm and particle swarm optimization show a decrease of 72.1% and 62.4% in displacement differences in the results of project monitoring and numerical analysis, respectively. This research shows the better performance of genetic algorithm than particle swarm optimization in minimization of error and faster success in achieving termination conditions.

Cite

CITATION STYLE

APA

Hashemi, S. M., & Rahmani, I. (2018). Numerical Comparison of the Performance of Genetic Algorithm and Particle Swarm Optimization in Excavations. Civil Engineering Journal, 4(9), 2186–2196. https://doi.org/10.28991/cej-03091149

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free