Abstract
Quaternions can be used as an alternative to model the fundamental patterns of electroencephalographic (EEG) signals in the time domain. Thus, this article presents a new quaternion-based technique known as quaternion-based signal analysis (QSA) to represent EEG signals obtained using a brain-computer interface (BCI) device to detect and interpret cognitive activity. This quaternion-based signal analysis technique can extract features to represent brain activity related to motor imagery accurately in various mental states. Experimental tests in which users where shown visual graphical cues related to left and right movements were used to collect BCI-recorded signals. These signals were then classified using decision trees (DT), support vector machine (SVM) and k-nearest neighbor (KNN) techniques. The quantitative analysis of the classifiers demonstrates that this technique can be used as an alternative in the EEG-signal modeling phase to identify mental states.
Author supplied keywords
Cite
CITATION STYLE
Batres-Mendoza, P., Montoro-Sanjose, C. R., Guerra-Hernandez, E. I., Almanza-Ojeda, D. L., Rostro-Gonzalez, H., Romero-Troncoso, R. J., & Ibarra-Manzano, M. A. (2016). Quaternion-based signal analysis for motor imagery classification from electroencephalographic signals. Sensors (Switzerland), 16(3). https://doi.org/10.3390/s16030336
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.