Abstract
• Background: The biomechanical behaviour of plant cells depends upon the material properties of their cell walls and, in many cases, it is necessary that these properties are quite specific. Additionally, physiological regulation may require that target cells responding to hormonal signals or environmental factors are able to modulate these characteristics. • Argument: This paper uses a rheological analysis of creep of elongating sunflower (Helianthus annuus) sunflower hypocotyls to demonstrate that the mechanical behaviour of plant cell walls is complex and involves multiple layered processes that can be distinguished from one another by the time-scale over which they lead to a change in tissue dimensions, their sensitivity to pH and temperature, and their responses to changes in spatial arrangement of the cell wall brought about by treatment with high Mr PEG. Furthermore, it appears possible to regulate individual rheological processes, with limited effect on others, in order to modulate growth without affecting tissue structural integrity. It is proposed that control of the water content of the cell wall and therefore the space between cell wall polymers may be one mechanism by which differential regulation of cell wall biomechanical properties is achieved. This hypothesis is supported by evidence showing that enzyme extracts from growing tissues can cause swelling in cell wall fragments in suspension. • Implications: The physiological implications of this complexity are then considered for growing tissues, stomatal guard cells and abscission cells. It is noted that, in each circumstance, a different combination of mechanical properties is required and that differential regulation of properties affecting behaviour over different time-scales is often necessary. © The Author 2007. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Thompson, D. S. (2008, January). Space and time in the plant cell wall: Relationships between cell type, cell wall rheology and cell function. Annals of Botany. https://doi.org/10.1093/aob/mcm138
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.