Abstract
Accurately decoding motor imagery (MI) brain-computer interface (BCI) tasks has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, less subject information and low signal-to-noise ratio of MI electroencephalography (EEG) signals make it difficult to decode the movement intentions of users. In this study, we proposed an end-to-end deep learning model, a multi-branch spectral-temporal convolutional neural network with channel attention and LightGBM model (MBSTCNN-ECA-LightGBM), to decode MI-EEG tasks. We first constructed a multi branch CNN module to learn spectral-temporal domain features. Subsequently, we added an efficient channel attention mechanism module to obtain more discriminative features. Finally, LightGBM was applied to decode the MI multi-classification tasks. The within-subject cross-session training strategy was used to validate classification results. The experimental results showed that the model achieved an average accuracy of 86% on the two-class MI-BCI data and an average accuracy of 74% on the four-class MI-BCI data, which outperformed current state-of-the-art methods. The proposed MBSTCNN-ECA-LightGBM can efficiently decode the spectral and temporal domain information of EEG, improving the performance of MI-based BCIs.
Author supplied keywords
Cite
CITATION STYLE
Jia, H., Yu, S., Yin, S., Liu, L., Yi, C., Xue, K., … Zhang, T. (2023). A Model Combining Multi Branch Spectral-Temporal CNN, Efficient Channel Attention, and LightGBM for MI-BCI Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1311–1320. https://doi.org/10.1109/TNSRE.2023.3243992
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.