Abstract
Tissue growth has to be carefully controlled to generate well-functioning organs. MicroRNAs are small non-coding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that miR-8, a conserved microRNA in the miR-200 family, controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, co-expression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker. Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.
Author supplied keywords
Cite
CITATION STYLE
Sander, M., Eichenlaub, T., & Herranz, H. (2018). Oncogenic cooperation between Yorkie and the conserved microRNA miR-8 in the wing disc of Drosophila. Development (Cambridge), 145(13). https://doi.org/10.1242/dev.153817
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.