Core–shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples

39Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A novel electrochemical sensor is reported for the detection of the antiviral drug favipiravir based on the core–shell nanocomposite of flower-like molybdenum disulfide (MoS2) nanospheres and molecularly imprinted polymers (MIPs). The MoS2@MIP core–shell nanocomposite was prepared via the electrodeposition of a MIP layer on the MoS2 modified electrode, using o-phenylenediamine as the monomer and favipiravir as the template. The selective binding of target favipiravir at the MoS2@MIP core–shell nanocomposite produced a redox signal in a concentration dependent manner, which was used for the quantitative analysis. The preparation process of the MoS2@MIP core–shell nanocomposite was optimized. Under the optimal conditions, the sensor exhibited a wide linear response range of 0.01 ~ 100 nM (1.57*10−6 ~ 1.57*10−2 μg mL−1) and a low detection limit of 0.002 nM (3.14*10−7 μg mL−1). Application of the sensor was demonstrated by detecting favipiravir in a minimum amount of 10 μL biological samples (urine and plasma). Satisfied results in the recovery tests indicated a high potential of favipiravir monitoring in infectious COVID-19 samples. Graphical abstract: [Figure not available: see fulltext.].

Cite

CITATION STYLE

APA

Wang, S., Wang, C., Xin, Y., Li, Q., & Liu, W. (2022). Core–shell nanocomposite of flower-like molybdenum disulfide nanospheres and molecularly imprinted polymers for electrochemical detection of anti COVID-19 drug favipiravir in biological samples. Microchimica Acta, 189(3). https://doi.org/10.1007/s00604-022-05213-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free