Genetic evidence for nonrandom sorting of mitochondria in the basidiomycete Agrocybe aegerita

22Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We studied mitochondrial transmission in the homobasidiomycete Agrocybe aegerita during plasmogamy, vegetative growth, and basidiocarp differentiation. Plasmogamy between homokaryons from progeny of three wild- type strains resulted in bidirectional nuclear migration, and the dikaryotization speed was dependent on the nuclear genotype of the recipient homokaryon. Little mitochondrial migration accompanied the nuclear migration. A total of 75% of the dikaryons from the fusion lines had both parental mitochondrial haplotypes (mixed dikaryons), and 25% had only a single haplotype (homoplasmic dikaryons); with some matings, there was a strong bias in favor of one parental haplotype. We demonstrated the heteroplasmic nature of mixed dikaryons by (i) isolating and subculturing apical cells in micromanipulation experiments and (ii) identifying recombinant mitochondrial genomes. This heteroplasmy is consistent with the previously reported suggestion that there is recombination between mitochondrial alleles in A. aegerita. Conversion of heteroplasmons into homoplasmons occurred (i) during long-term storage, (ii) in mycelia regenerated from isolated apical cells, and (iii) during basidiocarp differentiation. Homokaryons that readily accepted foreign nuclei were the most efficient homokaryons in maintaining their mitochondrial haplotype during plasmogamy, long-term storage, and basidiocarp differentiation. This suggests that the mechanism responsible for the nonrandom retention or elimination of a given haplotype may be related to the nuclear genotype or the mitochondrial haplotype or both.

Cite

CITATION STYLE

APA

Barroso, G., & Labarère, J. (1997). Genetic evidence for nonrandom sorting of mitochondria in the basidiomycete Agrocybe aegerita. Applied and Environmental Microbiology, 63(12), 4686–4691. https://doi.org/10.1128/aem.63.12.4686-4691.1997

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free