Aims/hypothesis: Progression to type 1 diabetes is associated with intramolecular epitope spreading to disease-specific antibody epitopes located in the middle region of glutamic acid decarboxylase 65 (GAD65). Methods: The relationship between intramolecular epitope spreading of autoantibodies specific to GAD65 in relation to the risk of developing type 1 diabetes was tested in 22 high-risk individuals and 38 low-risk individuals. We determined the conformational epitopes in this longitudinal study by means of competition experiments using recombinant Fab of four GAD65-specific monoclonal antibodies. Results: Sera from high-risk children in the preclinical stage recognise a specific combination of GAD65 antibody epitopes located in the middle and the C-terminus of GAD65. High risk of progressing to disease is associated with the emergence of antibodies specific for conformational epitopes at the N-terminus and the middle region. Binding to already established antibody epitopes located in the middle and at the N-terminus increases and shows a significant relation (p=0.005) with HLA, which confers risk of developing diabetes. Conclusions/interpretation: In type 1 diabetes, GAD65 antibodies are initially generated against the middle and C-terminal regions of GAD65. In genetically predisposed subjects the autoimmune response may then undergo intramolecular epitope spreading towards epitopes on the N-terminus and further epitopes located in the middle. These findings clearly demonstrate that the GAD65 autoantibody response in the preclinical stage of type 1 diabetes is dynamic and related to the HLA genotypes that confer risk of diabetes. GAD65-specific Fab should prove useful in predicting progression from islet autoimmunity to clinical onset of type 1 diabetes. © Springer-Verlag 2005.
CITATION STYLE
Schlosser, M., Banga, J. P., Madec, A. M., Binder, K. A., Strebelow, M., Rjasanowski, I., … Hampe, C. S. (2005). Dynamic changes of GAD65 autoantibody epitope specificities in individuals at risk of developing type 1 diabetes. Diabetologia, 48(5), 922–930. https://doi.org/10.1007/s00125-005-1719-1
Mendeley helps you to discover research relevant for your work.