Methodology and issues of integral experiments selection for nuclear data validation

5Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Nuclear data validation involves a large suite of Integral Experiments (IEs) for criticality, reactor physics and dosimetry applications. [1] Often benchmarks are taken from international Handbooks. [2, 3] Depending on the application, IEs have different degrees of usefulness in validation, and usually the use of a single benchmark is not advised; indeed, it may lead to erroneous interpretation and results. [1] This work aims at quantifying the importance of benchmarks used in application dependent cross section validation. The approach is based on well-known General Linear Least Squared Method (GLLSM) extended to establish biases and uncertainties for given cross sections (within a given energy interval). The statistical treatment results in a vector of weighting factors for the integral benchmarks. These factors characterize the value added by a benchmark for nuclear data validation for the given application. The methodology is illustrated by one example, selecting benchmarks for 239Pu cross section validation. The studies were performed in the framework of Subgroup 39 (Methods and approaches to provide feedback from nuclear and covariance data adjustment for improvement of nuclear data files) established at the Working Party on International Nuclear Data Evaluation Cooperation (WPEC) of the Nuclear Science Committee under the Nuclear Energy Agency (NEA/OECD).

Cite

CITATION STYLE

APA

Tatiana, I., Ivanov, E., & Hill, I. (2017). Methodology and issues of integral experiments selection for nuclear data validation. In EPJ Web of Conferences (Vol. 146). EDP Sciences. https://doi.org/10.1051/epjconf/201714606002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free