Abstract
Conventionally, designing rigid polyurethane foams (RPUFs) with improved physico-mechanical properties from new, bio-based polyols is performed by modifying foam formulations via experimentation. However, experimental endeavors are very resource-dependent, costly, cumbersome, time-intensive, waste-producing, and present higher health risks. In this study, an RPUF formulation utilizing a coconut-oil (CO)-based polyol with improved physico-mechanical properties was approximated through a computational alternative in the lens of the gel time of the RPUF formation. In the RPUF formation of most bio-based polyols, their very fast gel times negatively impact foam robustness. The computational alternative functioned by finding a CO-based RPUF formulation with a gel time in good agreement with a formulation based on commercial petroleum-derived polyol (control). The CO-based RPUF formulation with the best-fit catalyst loading was approximated by simulating temperature profiles using a range of formulations with modified catalyst loadings iteratively. The computational approach in designing RPUF with improved properties was found to effectively negate foam collapse (with a shrinkage decrease of >60%) and enhance foam strength (with a compressive strength increase of >300%). This study presents an economically and environmentally sustainable approach to designing RPUFs by enabling minimized utilization of material sources for experimentation and analysis and minimized dependence on waste-producing methods.
Author supplied keywords
Cite
CITATION STYLE
Alfeche, F. L. A. M., Dingcong, R. G., Mendija, L. C. C., Al-Moameri, H. H., Dumancas, G. G., Lubguban, A. A., … Lubguban, A. A. (2023). In Silico Investigation of the Impact of Reaction Kinetics on the Physico-Mechanical Properties of Coconut-Oil-Based Rigid Polyurethane Foam. Sustainability (Switzerland), 15(9). https://doi.org/10.3390/su15097148
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.