Abstract
Arabidopsis PDK1 activity is regulated by binding to the lipid phosphatidic acid (PA) resulting in activation of the oxidative stress-response protein kinase OXI1/AGC2-1. Thus there is an inferred link between lipid signaling and oxidative stress signaling modules. A mong a panel of hormones and stresses tested, we found that, in addition to PA, the fungal elicitor xylanase activated PDK1, suggesting that PDK1 has a role in plant pathogen defense mechanisms. The downstream OXI1 was activated by additional stress factors, including PA, H2O2, and partially by xylanase. We have isolated an interacting partner of OXI1, a Ser/Thr kinase (PTI1-2), which is downstream of OXI1. Its sequence closely resembles the tomato Pti kinase, which has been implicated in the hypersensitive response, a localized programmed cell death that occurs at the site of pathogen infection. PTI1-2 is activated by the same stresses/elicitors as OXI1 and additionally flagellin. We have used RNA interference to knock out the expression of PDK1 and OXI1 and to study the effects on PTI1-2 activity. We show that specific lipid signaling pathways converge on PTI1-2 via the PDK1-OXI1 axis, where as H2O2 and flagellin signals to OXI1-PTI1-2 via a PDK1-independent pathway. PTI1-2 represents a new downstream component that integrates diverse lipid and reactive oxygen stress signals and functions closely with OXI1. © 2006 by The American Society for Biochemistry and Molecular Biology, Inc.
Cite
CITATION STYLE
Anthony, R. G., Khan, S., Costa, J., Pais, M. S., & Bögre, L. (2006). The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. Journal of Biological Chemistry, 281(49), 37536–37546. https://doi.org/10.1074/jbc.M607341200
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.