In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor

31Citations
Citations of this article
56Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Spinal cord injury (SCI) results in glial scar formation and irreversible neuronal loss, which finally leads to functional impairments and long-term disability. Our previous studies have demonstrated that the ectopic expression of Zfp521 reprograms fibroblasts and astrocytes into induced neural stem cells (iNSCs). However, it remains unclear whether treatment with Zfp521 also affects endogenous astrocytes, thus promoting further functional recovery following SCI. Methods: Rat astrocytes were transdifferentiated into neural stem cells in vitro by ZFP521 or Sox2. Then, ZFP521 was applied to the spinal cord injury site of a rat. Transduction, real-time PCR, immunohistofluorescence, and function assessments were performed at 6 weeks post-transduction to evaluate improvement and in vivo lineage reprogramming of astrocytes. Results: Here, we show that Zfp521 is more efficient in reprogramming cultured astrocytes compared with Sox2. In the injured spinal cord of an adult rat, resident astrocytes can be reprogrammed into neurons through a progenitor stage by Zfp521. Importantly, this treatment improves the functional abilities of the rats as evaluated by the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale and further by calculation of its subscores. There was enhanced locomotor activity in the hind limbs, step length, toe spread, foot length, and paw area. In addition, motor evoked potential recordings demonstrated the functional integrity of the spinal cord. Conclusions: These results have indicated that the generation of iNSCs or neurons from endogenous astrocytes by in situ reprogramming might be a potential strategy for SCI repair. Graphical abstract: [Figure not available: see fulltext.]

Cite

CITATION STYLE

APA

Zarei-Kheirabadi, M., Hesaraki, M., Kiani, S., & Baharvand, H. (2019). In vivo conversion of rat astrocytes into neuronal cells through neural stem cells in injured spinal cord with a single zinc-finger transcription factor. Stem Cell Research and Therapy, 10(1). https://doi.org/10.1186/s13287-019-1448-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free