An EEG-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features

28Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Introduction: Attention is a complex cognitive function of human brain that plays a vital role in our daily lives. Electroencephalogram (EEG) is used to measure and analyze attention due to its high temporal resolution. Although several attention recognition brain-computer interfaces (BCIs) have been proposed, there is a scarcity of studies with a sufficient number of subjects, valid paradigms, and reliable recognition analysis across subjects. Methods: In this study, we proposed a novel attention paradigm and feature fusion method to extract features, which fused time domain features, frequency domain features and nonlinear dynamics features. We then constructed an attention recognition framework for 85 subjects. Results and discussion: We achieved an intra-subject average classification accuracy of 85.05% ± 6.87% and an inter-subject average classification accuracy of 81.60% ± 9.93%, respectively. We further explored the neural patterns in attention recognition, where attention states showed less activation than non-attention states in the prefrontal and occipital areas in α, β and θ bands. The research explores, for the first time, the fusion of time domain features, frequency domain features and nonlinear dynamics features for attention recognition, providing a new understanding of attention recognition.

Cite

CITATION STYLE

APA

Chen, D., Huang, H., Bao, X., Pan, J., & Li, Y. (2023). An EEG-based attention recognition method: fusion of time domain, frequency domain, and non-linear dynamics features. Frontiers in Neuroscience, 17. https://doi.org/10.3389/fnins.2023.1194554

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free