The efficiencies of perovskite solar cells have gone from single digits to a certified 22.1% in a few years’ time. At this stage of their development, the key issues concern how to achieve further improvements in efficiency and long-term stability. We review recent developments in the quest to improve the current state of the art. Because photocurrents are near the theoretical maximum, our focus is on efforts to increase open-circuit voltage by means of improving charge-selective contacts and charge carrier lifetimes in perovskites via processes such as ion tailoring. The challenges associated with long-term perovskite solar cell device stability include the role of testing protocols, ionic movement affecting performance metrics over extended periods of time, and determination of the best ways to counteract degradation mechanisms.
CITATION STYLE
Correa-Baena, J. P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W., & Hagfeldt, A. (2017, November 10). Promises and challenges of perovskite solar cells. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.aam6323
Mendeley helps you to discover research relevant for your work.