Abstract
We identified a rapid and novel system to effectively metabolize a large amount of H2O2 in the suspension cells of Scutellaria baicalensis Georgi. In response to an elicitor, the cells immediately initiate the hydrolysis of baicalein 7-O-β-D-glucuronide by β-glucuronidase, and the released baicalein is then quickly oxidized to 6,7-dehydrobaicalein by peroxidases. Hydrogen peroxide is effectively consumed during the peroxidase reaction. The β-glucuronidase inhibitor, saccharic acid 1,4-lactone, significantly reduced the H2O2-metabolizing ability of the Scutellaria cells, indicating that β- glucuronidase, which does not catalyze the H2O2 degradation, plays an important role in the H2O2 metabolism. As H2O2-metabolizing enzymes, we purified two peroxidases using ammonium sulfate precipitation followed by sequential chromatography on CM-cellulose and hydroxylapatite. Both peroxidases show high H2O2-metabolizing activity using baicalein, whereas other endogenous flavones are not substrates of the peroxidase reaction. Therefore, baicalein predominantly contributed to H2O2 metabolism. Because β-glucuronidase, cell wall peroxidases, and baicalein pre-exist in Scutellaria cells, their constitutive presence enables the cells to rapidly induce the H2O2-metabolizing system.
Cite
CITATION STYLE
Morimoto, S., Tateishi, N., Matsuda, T., Tanaka, H., Taura, F., Furuya, N., … Shoyama, Y. (1998). Novel hydrogen peroxide metabolism in suspension cells of Scutellaria baicalensis Georgi. Journal of Biological Chemistry, 273(20), 12606–12611. https://doi.org/10.1074/jbc.273.20.12606
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.