Abstract
This paper reports the influence of solidification rate and stress-relief annealing on the mechanical properties of cast 6063 Aluminium alloy (Al6063). Ingots of Al6063 were melted and then cast using sand and metal moulds. Some of the cast samples were heat treated and then cooled in natural air. Tensile test, hardness test, impact test and microstructural analysis were carried out on the samples. The results show substantial changes in the mechanical properties of the specimens. The ultimate tensile strength, yield strength and hardness percentage elongation of cast Al6063 increases with the use of casting method with high thermal conductivity and reduces when annealing is carried out on the specimens. The ultimate tensile strength of 146.7 MPa and 163.5 MPa were recorded for sand mould and metal mould samples, respectively and the values decreases by 10.3% and 7.5% for the respective moulds. In contrast, the values of impact strength and percentage elongation of cast Al6063 rod improved with the increase in thermal conductivity of casting method and annealing operation. The ductile increased by 51.01% and 45.82% for sand mould and metal mould samples, respectively, after they were annealed. Furthermore, microstructural analysis of cast Al6063 rod revealed a fine-grained structure with increase in thermal conductivity of casting method used; however, the annealing process encouraged grain growth as a result of the stress being relieved from the samples.
Cite
CITATION STYLE
Stephen, J. T., Adebayo, A., & Adeyemi, G. J. (2018). Influence of Solidification Rates and Stress-Relief Annealing on the Mechanical Properties of Cast 6063 Aluminium Alloy. European Journal of Engineering Research and Science, 3(5), 71. https://doi.org/10.24018/ejers.2018.3.5.750
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.