Accurate estimation of influenza epidemics using Google search data via ARGO

291Citations
Citations of this article
299Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for realtime tracking of other social events at multiple temporal and spatial resolutions.

Cite

CITATION STYLE

APA

Yang, S., Santillana, M., & Kou, S. C. (2015). Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14473–14478. https://doi.org/10.1073/pnas.1515373112

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free