Role of melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43 in the neuroendocrine control of pancreatic β-cell function

11Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

Abstract

Glucose homeostasis is finely regulated by a number of hormones and peptides released mainly from the brain, gastrointestinal tract, and muscle, regulating pancreatic secretion through cellular receptors and their signal transduction cascades. The endocrine function of the pancreas is controlled by islets within the exocrine pancreatic tissue that release hormones like insulin, glucagon, somatostatin, pancreatic polypeptide, and ghrelin. Moreover, both exocrine and endocrine pancreatic functions are regulated by a variety of hormonal and neural mechanisms, such as ghrelin, glucagon-like peptide, glucose-dependent insulinotropic polypeptide, or the inhibitory peptide somatostatin. In this review, we describe the role of neurohormones that have been less characterized compared to others, on the regulation of insulin secretion. In particular, we will focus on melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43, which display either insulinotropic or insulinostatic effects. In fact, in addition to other hormones, amino acids, cytokines, and a variety of proteins, brain-derived hormones are now considered as key regulators of glucose homeostasis, representing potential therapeutic targets for the treatment of diabetes and obesity.

Cite

CITATION STYLE

APA

Gesmundo, I., Villanova, T., Banfi, D., Gamba, G., & Granata, R. (2017, July 3). Role of melatonin, galanin, and RFamide neuropeptides QRFP26 and QRFP43 in the neuroendocrine control of pancreatic β-cell function. Frontiers in Endocrinology. Frontiers Media S.A. https://doi.org/10.3389/fendo.2017.00143

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free