Enhanced quantum sensing with room-temperature solid-state masers

16Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Quantum sensing with solid-state electron spin systems finds broad applications in diverse areas ranging from material and biomedical sciences to fundamental physics. Exploiting collective behavior of noninteracting spins holds the promise of pushing the detection limit to even lower levels, while to date, those levels are scarcely reached because of the broadened linewidth and inefficient readout of solid-state spin ensembles. Here, we experimentally demonstrate that such drawbacks can be overcome by a reborn maser technology at room temperature in the solid state. Owing to maser action, we observe a fourfold reduction in the electron paramagnetic resonance linewidth of an inhomogeneously broadened molecular spin ensemble, which is narrower than the same measured from single spins at cryogenic temperatures. The maser-based readout applied to near zero-field magnetometry showcases the measurement signal-to-noise ratio of 133 for single shots. This technique would be an important addition to the toolbox for boosting the sensitivity of solid-state ensemble spin sensors.

Cite

CITATION STYLE

APA

Wu, H., Yang, S., Oxborrow, M., Jiang, M., Zhao, Q., Budker, D., … Du, J. (2022). Enhanced quantum sensing with room-temperature solid-state masers. Science Advances, 8(48). https://doi.org/10.1126/sciadv.ade1613

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free