The Energy Model of Urban Heat Island

12Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

Abstract

Despite the fact that the presence of a heat island over a city was established quite a long time ago, now there is no versatile algorithm for the determination of the urban heat island intensity. The proposed models either take into account only one or several factors for the formation of an urban heat island or do not consider physical reasons for the difference in thermodynamic conditions between a city and countryside. In this regard, it is impossible to make a forecast and deter-mine the optimal methods for reducing the urban heat island intensity for an arbitrarily chosen city in a wide range of its characteristics and climatic conditions. This paper studies the causes for the formation of an urban heat island in order to develop the quantitative model of this process through the determination of the difference in radiation fluxes of various nature between a city and countryside (background area). A new equation allowing the intensity of an urban heat island in different seasons and different times of day, as well as under various atmospheric conditions, to be calculated from meteorological parameters measured at a stationary observation station is proposed. The model has been tested through the comparison of the results of numerical simulation with direct measurements of the heat island in Tomsk with a mobile station. It is shown that the main contrib-utors to the formation of the heat island in Tomsk are anthropogenic heat emissions (80–90% in winter, 40–50% in summer) and absorption of shortwave radiation by the urban underlying surface (5–15% in winter, 40–50% summer). The absorption of longwave radiation by the urban underlying surface, absorption by atmospheric water vapor and other constituents, and heat consumption for evaporation are insignificant. An increase in the turbulent heat flux is responsible for the outflow of 40–50% of absorbed energy in summer and 20–30% in winter.

Cite

CITATION STYLE

APA

Dudorova, N. V., & Belan, B. D. (2022). The Energy Model of Urban Heat Island. Atmosphere, 13(3). https://doi.org/10.3390/atmos13030457

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free