Abstract
In this paper we apply an evolving stochastic method to construct simple and effective Artificial Neural Networks, based on the theory of Tsallis statistical mechanics. Our aim is to establish an automatic process for building a smaller network with high classification performance. We aim to assess the utility of the method based on statistical mechanics for the estimation of transparent coating material on security papers and cholesterol levels in blood samples. Our experimental study verifies that there are indeed improvements in the overall performance in terms of classification success and at the size of network compared to other efficient back propagation learning methods.
Author supplied keywords
Cite
CITATION STYLE
Kalamatianos, D., Anastasiadis, A. D., & Liatsis, P. (2009). A nonextensive method for spectroscopic data analysis with artificial neural networks. Brazilian Journal of Physics, 39(2A), 488–494. https://doi.org/10.1590/S0103-97332009000400026
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.