Development of flight path planning for multirotor aerial vehicles

15Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

Abstract

This study addresses the flight-path planning problem for multirotor aerial vehicles (AVs). We consider the specific features and requirements of real-time flight-path planning and develop a rapidly-exploring random tree (RRT) algorithm to determine a preliminary flight path in three-dimensional space. Since the path obtained by the RRT may not be optimal due to the existence of redundant waypoints. To reduce the cost of energy during AV's flight, the excessive waypoints need to be refined. We revise the A-star algorithm by adopting the heading of the AV as the key indices while calculating the cost. Bezier curves are finally proposed to smooth the flight path, making it applicable for real-world flight.

Cite

CITATION STYLE

APA

Tsai, Y. J., Lee, C. S., Lin, C. L., & Huang, C. H. (2015). Development of flight path planning for multirotor aerial vehicles. Aerospace, 2(2), 171–188. https://doi.org/10.3390/aerospace2020171

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free