Abstract
A surface plasmon resonance (SPR) immunosensor was developed for the detection of E. coli O157:H7 by means of a new subtractive inhibition assay. In the subtractive inhibition assay, E. coli O157:H7 cells and goat polyclonal antibodies for E. coli O157:H7 were incubated for a short of time, and then the E. coli O157:H7 cells which bound antibodies were removed by a stepwise centrifugation process. The remaining free unbound antibodies were detected through interaction with rabbit anti-goat IgG polyclonal antibodies immobilized on the sensor chip using a BIAcore 3000 biosensor. The results showed that the signal was inversely correlated with the concentration of E. coli O157:H7 cells in a range from 3.0 × 104 to 3.0 × 108 cfu/mL with a detection limit of 3.0 × 104 cfu/mL. Compared with direct SPR by immobilizing antibodies on the chip surface to capture the bacterial cells and ELISA for E. coli O157:H7 (detection limit: both 3.0 × 105 cfu/mL in this paper), the detection limit of subtractive inhibition assay method was reduced by one order of magnitude. The method simplifies bacterial cell detection to protein-protein interaction, which has the potential for providing a practical alternative for the monitoring of E. coli O157:H7 and other pathogens. © 2011 by the authors; licensee MDPI, Basel, Switzerland.
Author supplied keywords
Cite
CITATION STYLE
Wang, Y., Ye, Z., Si, C., & Ying, Y. (2011). Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. Sensors, 11(3), 2728–2739. https://doi.org/10.3390/s110302728
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.